Automatic Spatial Context-Sensitive Cloud/Cloud-Shadow Detection in Multi-Source Multi-Spectral Earth Observation Images: AutoCloud+

نویسنده

  • Andrea Baraldi
چکیده

The proposed Earth observation (EO) based value adding system (EO VAS), hereafter identified as AutoCloud+, consists of an innovative EO image understanding system (EO IUS) design and implementation capable of automatic spatial context sensitive cloud/cloud shadow detection in multi source multi spectral (MS) EO imagery, whether or not radiometrically calibrated, acquired by multiple platforms, either spaceborne or airborne, including unmanned aerial vehicles (UAVs). It is worth mentioning that the same EO IUS architecture is suitable for a large variety of EO based value adding products and services, including: (i) low level image enhancement applications, such as automatic MS image topographic correction, co registration, mosaicking and compositing, (ii) high level MS image land cover (LC) and LC change (LCC) classification and (iii) content based image storage/retrieval in massive multi source EO image databases (big data mining).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

Multi-feature combined cloud and cloud shadow detection in GF-1 WFV imagery

The wide field of view (WFV) imaging system onboard the Chinese GF-1 optical satellite has a 16-m resolution and four-day revisit cycle for large-scale Earth observation. The advantages of the high temporal-spatial resolution and the wide field of view make the GF-1 WFV imagery very popular. However, cloud cover is an inevitable problem in GF-1 WFV imagery which influences its precise applicati...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

AROSICS: An Automated and Robust Open-Source Image Co-Registration Software for Multi-Sensor Satellite Data

Geospatial co-registration is a mandatory prerequisite when dealing with remote sensing data. Interor intra-sensoral misregistration will negatively affect any subsequent image analysis, specifically when processing multi-sensoral or multi-temporal data. In recent decades, many algorithms have been developed to enable manual, semior fully automatic displacement correction. Especially in the con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.04256  شماره 

صفحات  -

تاریخ انتشار 2016